Automated Probabilistic Classification of Transients and Variables
نویسنده
چکیده
There is an increasing number of large, digital, synoptic sky surveys, in which repeated observations are obtained over large areas of the sky in multiple epochs. Likewise, there is a growth in the number of (often automated or robotic) follow-up facilities with varied capabilities in terms of instruments, depth, cadence, wavelengths, etc., most of which are geared toward some specific astrophysical phenomenon. As the number of detected transient events grows, an automated, probabilistic classification of the detected variables and transients becomes increasingly important, so that an optimal use can be made of follow-up facilities, without unnecessary duplication of effort. We describe a methodology now under development for a prototype event classification system; it involves Bayesian and Machine Learning classifiers, automated incorporation of feedback from follow-up observations, and discriminated or directed follow-up requests. This type of methodology may be essential for the massive synoptic sky surveys in the future.
منابع مشابه
Fault location and classification in non-homogeneous transmission line utilizing breaker transients
In this paper, a single-ended fault location method is presented based on a circuit breaker operation using the frequencies of traveling waves. The proposed method receives the required data from voltage traveling waves with the aid of Fast Fourier Transform (FFT) and Wavelet Transform. Then, the Artificial Neural Network (ANN) identifies fault type and determines its location. In order to eval...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملA Probabilistic Model for COPD Diagnosis and Phenotyping Using Bayesian Networks
Introduction: This research was meant to provide a model for COPD diagnosis and to classify the cases into phenotypes; General COPD, Chronic bronchitis, Emphysema, and the Asthmatic COPD using a Bayesian Network (BN). Methods: The model was constructed through developing the Bayesian Network structure and instantiating the parameters for each of the variables. In order to validate the achiev...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کامل